Grand challenges in cellular biochemistry: the “next-gen” biochemistry

نویسنده

  • Cecilia Giulivi
چکیده

It is said that Biochemistry is a young scientific discipline, making its “formal” debut toward the end of the 1900th century (Manchester, 2000), with seminal works by Buchner (1897, Jaenicke, 2007), (Pasteur and Berthelot, 1906), Hill (1898), Embden and Glaessner (1901), Meyerhof (1911), Parnas (1911), Harden (1911), and, of course, Michaelis and Menten (Johnson, 2013; Michaelis and Menten, 2013; Deichmann et al., 2014). These early and important contributions marked the road for future work in the fields of (a) chemical and biochemical structures and associated functions by Sanger (1945), Perutz (1942), Franklin (1950), Watson and Crick (1953), Pauling et al. (1949, 1951), Pauling and Corey (1951), Zuckerkandl and Pauling (1962), Kornberg (1974, 1977), Boyer (1997), Walker et al. (1982), Abrahams et al. (1994); (b) metabolic pathways and regulation by Ochoa and Valdecasas (1929), Krebs and Johnson (1937), Novelli and Lipmann (1947), Fischer et al. (1959), Cori and Cori (1923, 1925), Houssay (1945, 1948), Lehninger (1942, 1945), Caputto et al. (1949), Cardini et al. (1950), Mitchell (1961), Benson and Calvin (1947), Hershko et al. (1980), Hershko and Ciechanover (1992), and (c) contributing to innovative techniques or approaches dedicated to advance basic knowledge (and making our lives easier) with Smith (1982), Winter et al. (1982), Mullis et al. (1986) (ante and post-PCR era) and Shimomura (1979), Chalfie et al. (1994), Heim et al. (1994) (ante and post-green fluorescent protein), Yalow et al. (1964), and Williams et al. (1977), Springer et al. (1979); (d) signaling molecules and signal transduction by LeviMontalcini and Amprino (1947), Cohen et al. (1954), Sibley et al. (1986), Benovic et al. (1987), Frielle et al. (1987), Fargin et al. (1988). Back in 1896, Buchner’s preparation of a “juice” from yeast (Buchner, 1897) is often regarded as the birth of modern biochemistry. However, I tend to digress with this strict view of biochemistry, reasoning that we (as a species) were taking advantage of biochemical principles without having a deep understanding of the underlying molecular processes. For instance, consider Buchner’s “juice” or actually wine making. This method, that has at its core the fermentation process one of the key pathways in biochemistry, dating back to around 6000 BC (Chambers and Pretorius, 2010). Refer to the complicated production of fish sauces considered among the most common flavor-enhancing condiments produced and distributed across ancient Roman Empire (Lowe, 2009). Another example comes from the mixture of organic preservatives (i.e., biochemical) used for ancient Egyptian mummification (Buckley and Evershed, 2001). Or think about the effects of diet on health as recognized by Hippocrates (460–377 BC; Caramia, 2006), the arab physician Ibn al-Nafis (Al-Nafis, 13th century) and Leonardo da Vinci (1452–1519; Caramia, 2006) as well as the experimentation with animals and structure—function of human body set by the Medieval Islamic era as early as the 9th century (AbdelHalim, 2011). This early biochemistry was empirical, done in settings other than laboratories, serving immediate needs, and some passed onto next generations by oral traditions. Then we would reason, are these contributions valuable to the genesis of biochemistry? Should they be dismissed because the microorganisms were not genotyped, the reactions were done in dolia instead of microplates? Then, if we accept these very early facts (and why not experiments?) as part of the genesis of this field, we will need to accept that biochemistry is a long, long (ancient?) journey that has accompanied us since the dawn of civilization. The general field of Biochemistry has grown since then to the point that it has been expanded to various more specific areas of research. For example, Cellular Biochemistry is at the crossroads of Chemistry (Organic, Physical, Analytical, Inorganic, Biological) and Biology (Chemical, Molecular) including studies on biomolecular structures and the mechanism of biochemical reactions, but also on the biological purposes of biochemical phenomena, i.e., metabolic pathways and their control, physiological significance and clinical relevance of topics presented. The regulation includes protein and gene expression analyses as well as protein post-translational modifications, epigenetic controls, metabolite-control systems, and gene-environment interactions as well as cell-cell interactions. This field covers areas from fundamental biochemical principles (e.g., enzymology, macromolecule structures) in cell-free systems to pathways, their regulation, and integration in physiology, and how their disturbance could lead to a number of diseases. While tremendous progress has been achieved, here are some of the aspects that

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact Representation of Protein Surface Patches

Introduction Prediction of protein structure from amino acid (AA) sequence is one of the grand challenges of modern biochemistry. While ab initio structure prediction is difficult, prediction of local structure is more tractable if experimentally determined structures of homologous proteins exist. The prediction of local patches is useful in predicting interaction partners of proteins and nucle...

متن کامل

Genistein ameliorates adverse cardiac effects induced by arsenic trioxide through preventing cardiomyocytes apoptosis.

BACKGROUND/AIMS Arsenic trioxide (As2O3) is a highly effective agent for treatment of acute promyelocytic leukemia (APL). However, consecutively administered As2O3 induces serious adverse cardiac effects, including long QT syndrome (LQTs) and even sudden cardiac death. Previous studies have shown that genistein (Gen) exerts anti-oxidant, anti-inflammatory, and anti-apoptotic effects. The presen...

متن کامل

The Effect of the Crocus Sativus L. Carotenoid, Crocin, on the Polymerization of Microtubules, in Vitro

Objective(s): Crocin, as the main carotenoid of saffron, has shown anti-tumor activity both in vitro and in vivo. Crocin might interact with cellular proteins and modulate their functions, but the exact target of this carotenoid and the other compounds of the saffron have not been discovered yet. Microtubular proteins, as one of the most important proteins inside the cells, have several functio...

متن کامل

Association of FAS A-670G Polymorphism and Risk of Uterine Leiomyoma in a Southeast Iranian Population

Background: Uterine leiomyoma (UL) is a benign tumor of uterine smooth muscle that affects women in reproductive ages. FAS has an important role in initial stages of apoptosis. Previous studies have shown an association between the FAS gene and tumorigenesis. In the present study, we evaluated the relationship between FAS A-670G (rs 1800682) and UL risk. Methods: The FAS gene polymorphism of...

متن کامل

Comparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission

Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014